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The Navier-Stokes like equation derived by Atassi & Shen for low-speed rarefied 
flows is analysed for a circular geometry. Asymptotic solutions for both Kn < 1 
and Kn B 1 are deduced using the method of matched asymptotic expansions. 
For K n  < 1, fust- and second-order solutions are obtained and compared with 
the corresponding BGK treatment. For Kn B I, this equation is used only to 
describe the far field, the inner solution being of the free-molecule type. The 
matching procedure leads to a blockage correction for the drag and heat-transfer 
rate. Results are compared with other theories and known experimental data. 

1. Introduction 
The theory we have developed in part 1 of this paper led to a single governing 

equation (part I, equation (49)) for a low-speed rarefied gas flow over a nearly 
isothermal cylinder. Owing to the complicated nature of the right-hand side of 
this equation only numerical solutions appear to be possible for arbitrary Knud- 
sen numbers. However, for the two asymptotic near-continuum and nearly free- 
molecule regimes, significanb simplifications can be introduced into the governing 
equation and analytical solutions can be carried out for simple geometries. As an 
application we treat in this paper the problem of a steady low-speed motion past 
an isothermal infinite circular cylinder. The method of matched asymptotic 
expansions is used to deduce solutions to our governing equation for K n  < 1 and 
Kn & I. The circular symmetry brings about further simplifications of the 
expressions of the rarefied terms. Using the same notation as in part I, we set up a 
system of cylindrical polar co-ordinates centred on the axis of the cylinder 
(figure 1). The characteristic geometric length is taken to be the radius vl of the 
cylinder. For a given point M ,  the angles q301 and q30z, which define the two planes 
tangent to the cylinder, are symmetric with respect to the radial axis OM and 
equal to 

Accordingly, the functions Gijk and Lijk defined in appendix A, which appear in 

q50 = arc sin rl/r. (1) 

28 F L Y  53 
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FIGURE 1. Geometrical configuration in the cross-sectional plane of the cylinder. 5, is the 
projection of the molecular velocity 5 and # is the polar angle in the phase space. The 
projection of the distance travelled by the molecules from the cylinder is PM = S,, the 
distance variable in the Knudsen layer is NM = 8 and u and v are the components of the 
gas velocity in the polar co-ordinate system (r,  0 ) .  

the right-hand side of our governing equation, depend only on the radial distance 
r and the Knudsen number Kn. In  addition, those with k an odd integer are 
equal to zero. The projection on the cross-sectional plane of the distance S 
travelled by the molecules from t h e  surface of the cylinder is given by 

8, = r cos q5 - (r: - r2 sin2 $)*. 

K = PmlrUm. 

(2) 

Because of the importance of the stress tensor in our problem, we take the collision 

(3) 
frequency 

Finally, we have the following governing equation : 

with the boundary conditions 

2. Near-continuum flow at low Reynolds number 
For small Knudsen numbers, the rarefaction effects are significant only in a 

small layer of thickness O(h) in the immediate neighbourhood of the body. The 
main effect of this Knudsen layer is to modify the inner boundary conditions for 
the Navier-Stokes equation governing the rest of the field. However, in the case 
of a circular cylinder the only known explicit solution of the latter is the Stokes- 
Oseen solution, when the Reynolds number Re < 1. This problem was treated by 
Tamada & Yamamoto (1967) using the BGK equation. It is noted that the 
assumption of a small Reynolds number imposes the condition that 

S, = O(KnRe) 
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and thus limits its practical usefulness. Nevertheless, it is particularly interesting 
here to show the applicability of our theory and the relative simplicity of our 
treatment. 

2 . 1 .  General form of the expansions 

The conditions of a small Knudsen number, K n  = h/r, < 1 ,  and a small 
Reynolds number, Re = rl/(v/Ua) 1 ,  v being the kinematic viscosity, imply that 
the viscous length v/Um is much larger than rl ,  which is in turn much larger than 
the mean free path A. This suggests that three regions of the flow field are to be 
considered: a Knudsen layer near the cylinder of size O(A) merging into a Stokes 
region of size O(r,), which in turn merges into an Oseen flow at a large distance of 
O(v/U,). We shall introduce appropriate variables and expand the governing 
equation ( 4 )  for each region. The solutions will be then matched using the method 
of matched asymptotic expansions. 

The Knudsen layer. In  the Knudsen layer we take the mean free path h as unit 
length and define the distance variable so = (r - rl)/A. The corresponding stream 
function is $O = $/?&A. We assume an expansion of the following form: 

' $ - O =  $:+Kn$!+ .... (6) 

Substituting (6) into (4) leads, after some reduction and double integration with 

which expresses the fact that the total shearing stress Pro is constant, and 

where al, a, and b, are functions of 0 to be deliermined by the boundary conditions 
at  the wall and matching with the Stokes expansion. The functions GSjk and Lijk 
are expanded in powers of K n  (see appendix A) to give 

and a similar form for Lijk. 
Integration of (7) and (8) can be carried out and we get 

where the normalized slip velocity w*(O, 0) = - (a$o/aso),o=o has been expanded as 

v*(o, 0 )  = $(o,  0 )  +Knw:(O, 0) +o(Kn),  (12) 
28-2 
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and the functions .F(so), Il(so), 12(s0), 13(sO), 14(so), &(so) and &(so) are given in 
appendix B. Expanding the boundary conditions (5) yields 

Application of conditions (13) to equation (8) gives 

2+n b2(8) = - ---v,*(O, 8). 
2Jn 

The remaining three unknown functions $ ( O ,  8),  wT(0,B) and a,(@ in (10) and 
(1 1) will be determined by matching these two equations with the Stokes solution 
for large values of so. The asymptotic expansions of f?: and af?!/aso as so+ 00 are 
deduced from those of the various functions involved in their expressions, and 
are given in appendix B. We finally obtain 

@: - v$(0,B)[Aos02+Also+A2]+exp as so-+co, (15) 

N A3so2+A4so+A5+exp as so+co, (16) 

where ' exp ' stands for terms that are exponentially small for large so, and 

I 

The quantities A;, A;, A& A;, A; and A: are given in appendix B. 

the dimensionless distance variable r* = r / r ,  and stream function 
The Stokes reg ion.  The unit length is the radius of the cylinder rl and we use 

@* = @l(r1um). 
The functions Gijk and Lijk that appear as coefficients of the physical variables 
and their gradients in the expression for 9 in (4) have in common a factor of the 
order of exp [ - (r* - l ) / K n ] .  For vanishing Kn and (r* - 1) = O( l), this factor 
vanishes exponentially. It is then clear that the effect of rarefaction is confined to 



A unified kinetic theory. Part 2 437 

the thin Knudsen layer and will be felt in this region only through the inner 
boundary conditions. Equation (4) is then reduced to 

Re 

where V, is the nabla operator corresponding to the distance variable r*. For small 
values of the Reynolds number the leading term of (18) will be the biharmonic 
equation 

We now assume an expansion of the form 

V$$* = 0. (19) 

(20) $* = fo(Re, Kn)$:(r*, 8;  Kn) + fi(Re, Kn)$:(r*, 8 ;  Kn)  + . . . , 
where f,+,(Re, Kn)/f,(Re, Kn)  + 0 as Re-+ 0. Expansion (20) should satisfy (18) 
and match with the Knudsen-layer solution near the wall and the Oseen solution 
at infinity. 

The Oseen region. The unit length is the viscous length v/Um = r,/Re and we 
introduce thenewvariablesp = r/(v/Um) and Y = $/v. Equation (4) then becomes 

where V, is the nabla operator corresponding to the distance variable p. We 
assume an expansion of the form 

Y = Fo(Re, Kn)'Yo(p, 0)  +El(Re, Kn)Y,(p, 8 )  + ..., (22) 

where Fn+,(Re, Kn)/F,(Re, Kn)+ 0 as Re+ 0. This expansion should satisfy (21) 
and the free-stream condition 

Y-tpsind as p+w, (23) 

and match the Stokes solution (20). However, the circle is seen from this region 
as a singular point and therefore its effect far upstream should vanish as p -+ 00, 

whatever the values of Re and K n  may be. This leads immediately to taking 

Fo(Re,Kn) = 1, (24) 

'Yo(p, 8 )  = p sin 8, (25) 

Yn(p,8)+0 as p+oo for all n =k 0. (26) 

2.2. The leading terms of the expansions 

We are now led to the classical problem of Proudman & Pearson (1957) with 
the difference that we have an additional parameter (Kn)  and the boundary 
conditions at the wall are replaced by a matching condition with the Knudsen- 
layer solution. Therefore, we give in a succinct manner the matching procedure 
between the three solutions. 

Upon substituting expansion (20) in (18) we get for the zero-order term 

V$+t = 0. (27) 
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The most general solution of this equation that is antisymmetric about 6 = 0 is 

+$ = [A,(Kn)r* log r* + B,(Kn)r* + C,(Kn)r*-l + D,(Kn)r*3] sin 8 
m 

m= 2 
+ B,(Kn)r*m+2+ C,(Kn)r*" + D , ( K ~ ) T * ~ +  + E,(Kn)r*-] sinm8. 

(28) 
Matching with the first term in the Oseen expansion (as),  we get 

A,(Kn) = 1, 
D,(Kn) = B,(Kn) = C,(Kn) = 0 for rn 2 2, 1 (29) 

fo(Re, Kn) = [log (l/Re)]-l. 

However, it is convenient to take 

fo(Re, Kn) = [log (1/Re) + C(Kn)]-l, (30) 

where C(Kn) is to be determined by matching conditions. The gauge function for 
the second term Yl in the Oseen expansion should then be 

431Wn) 
log(l/Re)+C(Kn)' 

.Fl(Re, Kn) = 

where $,(Kn) will also be determined by matching. The function Y, is a solution 
of the Oseen equation 

where 2 = pcos6. The general form of Y, is given by Tomotika & Aoi (1950). 
For small p, the Oseen expansion becomes 

(0; - a/aa)vy, = 0, (32) 

Y = psinO+F,(Re,Kn) [log&p+ y*- l]psin6+O(p210gp), (33) 

where y* = 0.5772.. . is Euler's constant. 
Matching (33) with the first term (28) of the Stokes solution gives 

C(Kn) = B0(Kn)+l-y*+log4, +,(Kn) = 1. (34) 

Fn(Re, Kn) = [log (4/Re) + 1 - y* + B,(Kn)]-", (35) 

f,(Re, Kn) = [log (4/Re) + 1 - y* + Bo(Kn)]-'"fl). (36) 

This leads to I?$: = 0. for all n. (37) 

As a consequence of the nonlinearity of (21), we obtain 

However, since (28) and (33) match perfectly as in the classical continuum case 
reported by Van Dyke (1964), we have the following form for the Stokes ex- 
pansion : 

$* = f (Re, Kn)+$, 

f(Re, Kn)  = fo(Re, Kn)  + c a,f,(Re, Kn), 

(38) 

(39) 
m 

n=2 
with 

where an are constants. The work of Kaplun (1957) can be easily extended here to 
show that a2 = - 0.87. 
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FIGURE 2. First-order velocity profile in the Knudsen layer. -, prome and asymptote 
from the present theory. Results of Tamada & Yamamoto : - - -, prome; - - -, asymptote. 

Now we determine B,, C,, Do, D, and E, by matching the Stokes expansion 
(38) with the Knudsen-layer solutions (15) and (16). We assume that Bo(Kn) can 
be expanded in power of Kn as 

B0(Kn) = B o o + B o l K ~ + B o ~ K ~ 2 . . . ,  (40) 

and assume similar forms for the other functions. We then rewrite the Stokes 
expansion (38) in Knudsen variables. The matching procedure is straightforward 
and gives D,  = E, = 0 for all m, 

B 00 - $, B,, = +A,/Ao = 0.9869, 

' = 4.008, c - -  
O2 - 2 Knf(Re, Kn) sin 0 

The slip velocity at the wall is also determined: 

1 
v$(O, 0) = -f(Re, Kn)Kn sin 0 = - 1*3789f(Be, Kn) Kn sin 8, 

vf(O,8) = *&f(Be,Kn) Knsin0 = 2.5838f(Re,Kn)Knsin0. 

A0 

2+7rA0 

The profle of the first-order tangential velocitiy v$(s0,0) = -a@;/a$J in the 
Knudsen layer is shown in figure 2. We have also plotted to  first order 

v*(r*, 8)  = - a@*/ar*, 
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which constitutes the asymptote to this profile and gives the conventional slip 
velocity 

v,* = - (a$*/ar*),=, = - (1-9738Kn - 8.343Kn2) f (Re, Kn)  sin 0. (43) 

The drag of the cylinder is given by 

and the drag coefficient is 
D = 4npU, f (Re ,  K n )  

4n D 
D -  n,U,r, Re 

= -[fo(Re,Kn)-0.87fi(Re, Kn)+ ...I, c -2 

(44) 

(45) 

with f,,(Re,Kn) = [log(4/Re)+&-r*+0.9869Kn-4-335Kn2+ ...]-l. (46) 

This result should be comparedwith that obtained by Tamada & Yamamoto using 
the linearized BGK equation. To first order, their value 1.016 is in a very close 
agreement with our 0.9869. To the second order, they obtained a much smaller 
value 0.0166 for the coefficient of Kn2 compared with our value of - 4-335 in (46). 

2.3. Compressibility effects 
The pressure is easily calculated from the stream function $*, with the results, 

P = (P - Pm)/Pm = - 2f (Re ,  Kn) K n  S, cos 8/r*. (47) 

From the equation of state of the gas, we obtain 

P = % + P ,  (48) 

where 6 = (n - n,)/n, and = (T - T,)/T,. The order of P was given in our 
general discussion of the compressibility effects in § 4 of part 1 of this paper as 
the largest of 82, and 8, Kn2. Therefore, from (47) and (48) we have - 

6 = P. (49) 

3. Nearly free-molecule flow 
For a large Knudsen number the general scheme of the flow can be simplified, 

making possible some analytical treatment of the probIem. We consider three 
regions of the flow field. Near the body, there is a region of size O(r,) in which the 
number of collisions between molecules is relatively small. Accordingly, a free- 
molecule solution is the zero-order solution and can be directly anaIysed without 
using (4) .  This region merges at a distance O(A)  into a region where the fluid 
obeys the governing equation (4) and which we shall call the transition region. 
Finally, noting that the assumption of a low-speed motion 8, < 1 leads to  
v/Um & A, we conclude that at a large distance O(v/U,) the rarefied part 92 
of (4) vanishes exponentially as exp ( - I/#,) for small values of 8, to yield 
the usual Oseen region. 

We introduce appropriate non-dimensional variables and stream functions as 
for the near-continuum flow. In the transition region the unit length is taken to 
be the mean free path h and the following expansion is assumed: 

1L-O =fo(Re,Kn)$~(ro,O)+f,(Re,Kn)$-O,(ro,O)+ .... (50) 
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For the Oseen region the unit length is ./Urn and, for similar reasons to those 
discussed for the near-continuum regime, we assume the following expansion : 

Y = p sin 0 + F,(Re, Kn) @,(p, 0)  + . . . . (51) 

fi+O, P1+O as Kn+m and/or Re-tO. ( 5 2 )  

The gauge functions fl and F, satisfy the conditions 

The function Y l ( p , B )  satisfies the Oseen equation (32). For a small Reynolds 
number an approximate form of the solution is given by Lagerstrom (1964) for 
the velocity field 

where i is the unit vector parallel to the free-stream velocity, E is a constant 
parameter and 

u* = i + 2su(l)+ O(Re2), (53) 

u(1) = V[logp + exp ( t p  cos B)K,(+p)] - exp (gp cos B)K,(Qp)i. (54) 

KO is the modified Bessel function. The perturbation 2 d l )  to the uniform flow is 
due to the drag D of the cylinder acting as a singular force on the velocity field. 
The expression for the drag is 

D = 26.(2rpUm). ( 5 5 )  

Hence, the drag coefficient is 
D 47r c, = 7 = - 6. 

P U J ,  Re 

On the other hand, the drag coefficient C,,,, of an isothermal circular cylinder in 
a free-molecule flow is well known (see Patterson 1956). For small 8, it can be well 

This suggests that li;(Re, Kn) = E = A(Kn)/Kn, (58 )  

with A(Kn) = O(1). From (53) we get the expression for the stream function Y, 
for small p, which, when substituted in expansion (51), gives 

(59) Y = p sin B + €[log &p + y* - l]p sin 6' + O(p2). 

Expanding (59) in the transition region variables, we obtain 

?,ho = rosin8+e[log(ReKn) +log&rO+y*- l]rosinB+ O(Re2Kn2). (60) 

This immediately suggests taking 

fo(Re,Kn) = l+~log(ReKn) ,  f,(Re,Kn) = E ,  (61) 

and also that for large ro $0 +rosin 8. (62) 

Now we return to study (4), which governs the transition region. First, we note 
that the radius of the circle in terms of the mean free path h is l/Kn. For large Kn, 
the body is seen from this region as a singular point. Since the departure from the 
Maxwellian equilibrium is due to the presence of the body in the flow we should 
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then expect its effect to be only a small perturbation to the main flow. This 
clearly suggests that 

which satisfies condition (62). To prove that (63) is also a solution to (4) we 
calculate the order of the rarefied part W of this equation. The angle 2q50 under 
which the cross-section of the cylinder is seen becomes small in this transition 
region. Expanding (i), we obtain 

$; = rOsin8, (63) 

q50 = l/r°Kn+O(Kn-3). (64) 

In  a similar way we expand the functions Giik and L{jk: 

2 
' i5k (k+ 1) ?TKn(k+l)rO(k+l) I 

Consequently, the leading term of the rarefied part 9 is 

since (Pw)R is the only component of the complementary stress tensor in which 
the functions Gijk and Lijk have the index k = 0. Rewriting (4) using the transition 
region variables yields 

where Do is the nabla operator with h as length unit, and 

where the subscript w denotes the conditions at the wall, y is the specific heat 
ratio, Pr stands for the Prandtl number, .Fico) = (n(0)-nn,)/n,. do) is a partial 
density associated with the Chapman-Enskog velocity distribution function and 
is defined by equation (16) of part I of this paper. Here, it represents the density 
of the incoming molecules. 

For an isothermal cylinder Tw = 0 and the variations of the density and tem- 
perature are of order S, (see the discussion of compressibility effects in $4 of 
part 1). Therefore, the order of the right-hand side of (67) is that of the functions 
Gifo and Lijo, which is 1/Kn. Upon substituting for $O by its expansion (50) in 
(67), and noting that ReKn = 2X,, we obtain for the first term 

v;$; = 0. (69) 

This confirms that (63) is the zero-order solution of (67). However, the first of 
(61) shows that there is a uniform slowing down of the flow velocity by an 
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amount slog (KnRe),  owing to the drag of the cylinder seen as a singular force 
acting on the flow field. Before writing the equation for $O,, we note that from the 
free-molecule solution we have, at a large distance O(h) ,  

f i ( O )  N SJKn,  - S,/Kn and f i w  = - n*S, cos 8. 

The equation for $-! follows after some arrangement and by neglecting 

Re K n  = 2S,; 

A direct integration gives the vorticity, which is, after matching with the Oseen 
solution (59), 

For small values of YO, the leading term of the vorticity is 

('+47dA(Kn) )?sine. ro 

From this last result we conclude that for small ro the expansion of $O, including 
the first two terms @: and @O,, is given by 

$0 = ( 1  + E log (Re Kn))ro sin 8 

+e(1 +5/4n~A(Kn))r010grosin8+o(l/Kn). (73) 

Rewriting expansion (73) in the inner region variables yields 

$* = ( 1  - sb)r* sin 8 + O( 1/Kn),  (74) 

where 1 1 5  
A(Kn) log - + -log K n  . 

Re 4774 (75) 

Equation (74) says that the effective velocity of the flow as seen by the body in the 
free-molecule-like inner region is Urn( 1 - Eb). As with our preliminary results 
(Atassi & Shen 1969), we call eb the blockage factor. However, we ought to point 
out that in those results, because we had not yet determined the second term $O, 
of the transition region expansion, only the first term of€:, was given. Finally, we 
conclude that the drag coefficient and heat-transfer rate can be calculated as for a 
free-molecule flow but with a free-stream velocity reduced by the blockage factor 
eb . This yields immediately 

where Nu is the Nusselt number and Nu, is the limit of Nu as S, -+ 0. The sub- 
script P M  denotes the corresponding free-molecule value with a free-stream 
velocity U,. 
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Combining (56), (57)' (58), (75) and (76)' we obtain the expression for e: 

This leads immediately to 

( 7 8 )  
CD 1 - 5/4,/~[(log Kn)/Kn] 

C y M  = 1 + [ ( 6 + ~ ) / 8 4 ~ ]  [lOg(l/Re)/Kn]' 

It is interesting to note that the slowing down process of the velocity has 
increased from elog (ReKn) at the outer boundary of the transition region to eb 
at its inner boundary. This blockage factor was not found by Liu & Passamaneck 
(1967), who used Lees' (1959) moment method. Also we note that eb contains two 
different effects. The first term of (75), clog (l/Re), is due to the action of the drag 
acting as a singular force on the far flow field, whereas its second term, 

(5/4Jm) [ ( r o g m l w ,  

is due to collision effects in the transition region between the incoming molecules 
and those reflected from the body and thus depends on the kinetic theory model 
for the transition region. We therefore expect our blockage factor to depend on 
the average geometry of the body, and the form of (78) to hold for different 
geometries with changes only in the numerical factors. In  fact, if we introduce in 
(78) the drag coefficient in the continuum regime, 

477 

cD> = Re log (3*703/Re) ' (79) 

and note that log 3.703 will introduce a term of O( l/Kn) which is negligible to our 
order of approximation, we get 

If we retain only the first term of (80), we obtain Sherman's (1963) empirical 
formula 

It should be pointed out that in our derivation of (78) the collision effects in the 
inner free-molecule-like region are not kaken into account. Our blockage correc- 
tion eo occurs before these effects, which would be of order 1/Kn, are considered. 
Only those collision effects in the transition region are accounted for by the 
numerator of the right-hand side of (78). Further, ignoring them will lead to the 
simplified universal formula (81), which then can be derived in a very simple 
fashion by directly matching the Oseen solution (59) to the inner free-molecule 
solution. 
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FIGURE 3. The drag of a cylinder versus the Knudsen number. Comparisons of the present 
theory with experimental data for different values of the molecular speed ratio S. Solid 
o w e s  on the right- and left-hand side of the figure indicate nearly free-molecule and near- 
continuum theory respectively. - - -, continuum theory for S = 0.013. Data of Brun et al. 
(1963): A, S = 0.035; 0, S = 0.0926; A, 8 = 0.117. Data of Coudeville et al. (1965): 
0, S = 0,013; 0, S = 0-027; 0 ,  S = 0.200. 

4. Comparisons with data 
We have compared the results of (45) and (78) with the data of Brun, Fancy & 

Trotel (1963) and Coudeville, Trhpau & Brun (1965). In  the near-continuum 
regime, figure 3 shows a very good agreement of our theory with experiments. 
For this comparison we have dropped the term of O(Kn2) in (46) since, with its 
large coefficient, it limits the useful range of application of (45). We preferred to 
use two terms in the expansion of C, as given by (45) because this gives a better 
agreement with experimental data for higher values of 8, and when the Reynolds 
number becomes closer to unity. Also, we note that an extension of (45) to a 
Knudsen number of order one still yields good agreement with experiments. 

On the oOher hand, for nearly free-molecule flows we do not, have enough 
experimental data in the range Kn > 10, because of the difficulties of drag 
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FIGURE 4. The drag and heat-transfer rate of a cylinder in Sherman's reduced variables. 
The asymptotic curves are plots of (78) for different values of the molecular speed ratio S. 
--- , X = 0.34; -. -, X = 0.12; -. a-, S = 0,035; - - .  . . , plot of (45) for X = 0.035. 
Data of Brun et al. (1963): A, S = 0.035; 0,s = 0.0925; A, S = 0-117. Data of Atassi 
& Brun (1967): B, S = 0.12; 4 = 0.34. 

measurements as the Knudsen number increases. However, for the two values 
S, = 0-035 and S, = 0-0925 experimental values seem to indicate agreement 
with curves. Also, we notice that the blockage factor is more important for smaller 
velocities. This fact can be explained by the following: as the mass motion of the 
gas becomes smaller with respect to molecular velocities, more of the effects of 
the perturbation produced by the cylinder on the far field can go upstream and 
the fluid feels these effects more. 

Finally, using Sherman's reduced variables, we have compared on figure 4 our 
asymptotic solutions (45) and (78) with the drag measurements mentioned above 
and the heat-transfer data of Atassi & Brun (1967). The latter thus extend the 
available experimental data to the range of large Knudsen numbers. A very good 
agreement between data and theory is observed. Also, it is noted that this plot 
does not eliminate all Mach number effects; however, it makes the dependence on 
the Mach number rather weak. In  the transition regime, experimental evidence 
shows that (81) is a satisfactory interpolation formula. 
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Appendix A. Expansion of Giik and Lijk for Kn < 1 

The functions Giik and Lijk were defined in part 1 of this paper as 

Ldjk = G ~ ~ ~ +  LJ'oa~; cosi + sink#4,(S$) a$, (A 2) 
7l $01 

where $ is the phase angle shown on figure 1, Si = SJh and the Ji(S;) are the 
functions studied by Abramowitz ( 1953) : 

Because of the circular symmetry, $02 = -$ol = $o, which was defined by (1) .  
For Kn < 1, we have 

$o = $n- (2 Kn so)& + O(Kn*). (A 4) 

Expanding S, (see equation (2)) in a similar way, we obtain, for q5 -= Qn, 

+ O(Kn2). tan2 $ + Q Kn so2 - 50 5; = - 
cos + cos $ 

This leads t o  

Because of the exponential decay of Ji(so/cos q5) when so/cos #-+a ($3 $r), it can 
be shown that 

The integrals in (A 6) can be evaluated by introducing the Cartesian co-ordinates 
2 = X cos $ and y = X sin 4, and splitting the double integrals into two factors. 
We finally get for i = j + k +  1 

Giik = 2Jk(0)4(s0) - Kn d"'Jk+2(0)&3(s0) + o(Kn) (A 7) 

and for i = j + k + 3  

' i i k  = 2[Jk(0)4+2(s0) + J k + 2 ( 0 ) 4 ( s 0 ) 1  

-Knso2[Jk+a(0)J;,_,(s0) + Jj+2(0)J;,_,(s0)] + o ( K ~ ) .  (A 8) 

Equations (A 7) and (A 8) can be summarized as 

Gijk = G$ik + K n  Gijk + o( Kn), 

where the definitions of GIik and Gjjk are quite obvious. 
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In  a similar way we obtain the expansion of Lgjk:  

Appendix B. The functions of F(s0) and &(so) of the Knudsen-layer 
solutions 

Ha = lirn exp [ - F(sO)] = 0.4420.. . . 
s@+m 

A; = lirn (Il(so) exp [ -P(so)] -so) = 0.6322.. . . 
so+ m 

A; = lim [14(s0)/Hm-s0] = 0.9140 ... . 
sO+m 

A; = lirn [&,(so)& - i soz  -A;sO] = - 1.6450.. . . 
s*+m 

A; = lirn 16(so) = 0.345 ... . 
sO+m 
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